Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nat Immunol ; 24(6): 979-990, 2023 06.
Artigo em Inglês | MEDLINE | ID: covidwho-2315011

RESUMO

Antiviral CD8+ T cell immunity depends on the integration of various contextual cues, but how antigen-presenting cells (APCs) consolidate these signals for decoding by T cells remains unclear. Here, we describe gradual interferon-α/interferon-ß (IFNα/ß)-induced transcriptional adaptations that endow APCs with the capacity to rapidly activate the transcriptional regulators p65, IRF1 and FOS after CD4+ T cell-mediated CD40 stimulation. While these responses operate through broadly used signaling components, they induce a unique set of co-stimulatory molecules and soluble mediators that cannot be elicited by IFNα/ß or CD40 alone. These responses are critical for the acquisition of antiviral CD8+ T cell effector function, and their activity in APCs from individuals infected with severe acute respiratory syndrome coronavirus 2 correlates with milder disease. These observations uncover a sequential integration process whereby APCs rely on CD4+ T cells to select the innate circuits that guide antiviral CD8+ T cell responses.


Assuntos
Antivirais , COVID-19 , Humanos , Calibragem , Células Apresentadoras de Antígenos , Linfócitos T CD8-Positivos , Antígenos CD40 , Interferon-alfa , Linfócitos T CD4-Positivos
2.
Am J Pathol ; 193(7): 866-882, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: covidwho-2309498

RESUMO

The disease severity of coronavirus disease 2019 (COVID-19) varies considerably from asymptomatic to serious, with fatal complications associated with dysregulation of innate and adaptive immunity. Lymphoid depletion in lymphoid tissues and lymphocytopenia have both been associated with poor disease outcomes in patients with COVID-19, but the mechanisms involved remain elusive. In this study, human angiotensin-converting enzyme 2 (hACE2) transgenic mouse models susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were used to investigate the characteristics and determinants of lethality associated with the lymphoid depletion observed in SARS-CoV-2 infection. The lethality of Wuhan SARS-CoV-2 infection in K18-hACE2 mice was characterized by severe lymphoid depletion and apoptosis in lymphoid tissues related to fatal neuroinvasion. The lymphoid depletion was associated with a decreased number of antigen-presenting cells (APCs) and their suppressed functionality below basal levels. Lymphoid depletion with reduced APC function was a specific feature observed in SARS-CoV-2 infection but not in influenza A infection and had the greatest prognostic value for disease severity in murine COVID-19. Comparison of transgenic mouse models resistant and susceptible to SARS-CoV-2 infection revealed that suppressed APC function could be determined by the hACE2 expression pattern and interferon-related signaling. Thus, we demonstrated that lymphoid depletion associated with suppressed APC function characterizes the lethality of COVID-19 mouse models. Our data also suggest a potential therapeutic approach to prevent the severe progression of COVID-19 by enhancing APC functionality.


Assuntos
COVID-19 , Camundongos , Humanos , Animais , SARS-CoV-2/metabolismo , Peptidil Dipeptidase A/metabolismo , Camundongos Transgênicos , Suscetibilidade a Doenças , Células Apresentadoras de Antígenos , Modelos Animais de Doenças , Pulmão/metabolismo
3.
Commun Biol ; 6(1): 188, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: covidwho-2255515

RESUMO

Herein, we studied the impact of empty LNP (eLNP), component of mRNA-based vaccine, on anti-viral pathways and immune function of cells from young and aged individuals. eLNP induced maturation of monocyte derived dendritic cells (MDDCs). We further show that eLNP upregulated CD40 and induced cytokine production in multiple DC subsets and monocytes. This coincided with phosphorylation of TANK binding kinase 1 (pTBK1) and interferon response factor 7 (pIRF7). In response to eLNP, healthy older adults (>65 yrs) have decreased CD40 expression, and IFN-γ output compared to young adults (<65 yrs). Additionally, cells from older adults have a dysregulated anti-viral signaling response to eLNP stimulation, measured by the defect in type I IFN production, and phagocytosis. Overall, our data show function of eLNP in eliciting DC maturation and innate immune signaling pathways that is impaired in older adults resulting in lower immune responses to SARS-CoV-2 mRNA-based vaccines.


Assuntos
COVID-19 , Adulto Jovem , Humanos , Idoso , SARS-CoV-2 , Células Apresentadoras de Antígenos , Antígenos CD40 , RNA Mensageiro
4.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: covidwho-2241081

RESUMO

mRNA vaccines have been demonstrated as a powerful alternative to traditional conventional vaccines because of their high potency, safety and efficacy, capacity for rapid clinical development, and potential for rapid, low-cost manufacturing. These vaccines have progressed from being a mere curiosity to emerging as COVID-19 pandemic vaccine front-runners. The advancements in the field of nanotechnology for developing delivery vehicles for mRNA vaccines are highly significant. In this review we have summarized each and every aspect of the mRNA vaccine. The article describes the mRNA structure, its pharmacological function of immunity induction, lipid nanoparticles (LNPs), and the upstream, downstream, and formulation process of mRNA vaccine manufacturing. Additionally, mRNA vaccines in clinical trials are also described. A deep dive into the future perspectives of mRNA vaccines, such as its freeze-drying, delivery systems, and LNPs targeting antigen-presenting cells and dendritic cells, are also summarized.


Assuntos
COVID-19 , Nanopartículas , Vacinas , Humanos , COVID-19/prevenção & controle , Pandemias , Vacinas de mRNA , Células Apresentadoras de Antígenos , Vacinas contra COVID-19/genética , Vacinas Sintéticas
5.
Pathol Res Pract ; 233: 153848, 2022 May.
Artigo em Inglês | MEDLINE | ID: covidwho-1829376

RESUMO

Coronavirus Disease 2019 (COVID-19) is one of the three lethal coronavirus outbreaks in the recent two decades and a serious threat to global health all over the world. The principal feature of the COVID-19 infection is the so-called "cytokine storm" exaggerated molecular response to virus distribution, which plays massive tissue and organ injury roles. Immunological treatments, including monoclonal antibodies and vaccines, have been suggested as the main approaches in treating and preventing this disease. Therefore, a proper investigation of the roles of antigen-presenting cells (APCs) in the aforementioned immunological responses appears essential. The present review will provide detailed information about APCs' role in the infection and pathogenesis of SARS-CoV-2 and the effect of monoclonal antibodies in diagnosis and treatment.


Assuntos
COVID-19 , Anticorpos Monoclonais , Células Apresentadoras de Antígenos , Humanos , SARS-CoV-2
6.
Front Immunol ; 12: 774491, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1648672

RESUMO

Common human coronaviruses have been circulating undiagnosed worldwide. These common human coronaviruses share partial sequence homology with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); therefore, T cells specific to human coronaviruses are also cross-reactive with SARS-CoV-2 antigens. Herein, we defined CD4+ T cell responses that were cross-reactive with SARS-CoV-2 antigens in blood collected in 2016-2018 from healthy donors at the single allele level using artificial antigen-presenting cells (aAPC) expressing a single HLA class II allotype. We assessed the allotype-restricted responses in the 42 individuals using the aAPCs matched 22 HLA-DR alleles, 19 HLA-DQ alleles, and 13 HLA-DP alleles. The response restricted by the HLA-DR locus showed the highest magnitude, and that by HLA-DP locus was higher than that by HLA-DQ locus. Since two alleles of HLA-DR, -DQ, and -DP loci are expressed co-dominantly in an individual, six different HLA class II allotypes can be used to the cross-reactive T cell response. Of the 16 individuals who showed a dominant T cell response, five, one, and ten showed a dominant response by a single allotype of HLA-DR, -DQ, and -DP, respectively. The single allotype-restricted T cells responded to only one antigen in the five individuals and all the spike, membrane, and nucleocapsid proteins in the six individuals. In individuals heterozygous for the HLA-DPA and HLA-DPB loci, four combinations of HLA-DP can be expressed, but only one combination showed a dominant response. These findings demonstrate that cross-reactive T cells to SARS-CoV-2 respond with single-allotype dominance.


Assuntos
Alelos , Antígenos Virais/imunologia , Linfócitos T CD4-Positivos/imunologia , COVID-19/imunologia , Genes MHC da Classe II , Antígenos HLA-D/genética , SARS-CoV-2/imunologia , Adulto , Células Apresentadoras de Antígenos/imunologia , Doadores de Sangue , COVID-19/virologia , Células Cultivadas , Reações Cruzadas , ELISPOT/métodos , Feminino , Antígenos HLA-D/imunologia , Voluntários Saudáveis , Humanos , Alótipos de Imunoglobulina/imunologia , Masculino , Adulto Jovem
8.
Cell Immunol ; 371: 104451, 2022 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1499702

RESUMO

The COVID-19 pandemic has once again brought to the forefront the existence of a tight link between the coagulation/fibrinolytic system and the immunologic processes. Tissue-type plasminogen activator (tPA) is a serine protease with a key role in fibrinolysis by converting plasminogen into plasmin that can finally degrade fibrin clots. tPA is released in the blood by endothelial cells and hepatocytes but is also produced by various types of immune cells including T cells and monocytes. Beyond its role on hemostasis, tPA is also a potent modulator of inflammation and is involved in the regulation of several inflammatory diseases. Here, after a brief description of tPA structure, we review its new functions in adaptive immunity focusing on T cells and antigen presenting cells. We intend to synthesize the recent knowledge on proteolysis- and receptor-mediated effects of tPA on immune response in physiological and pathological context.


Assuntos
Coagulação Sanguínea/imunologia , COVID-19/imunologia , Fibrinólise/imunologia , Imunidade/imunologia , SARS-CoV-2/imunologia , Ativador de Plasminogênio Tecidual/imunologia , Células Apresentadoras de Antígenos/imunologia , COVID-19/epidemiologia , COVID-19/virologia , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Humanos , Modelos Imunológicos , Pandemias , SARS-CoV-2/fisiologia , Linfócitos T/imunologia , Ativador de Plasminogênio Tecidual/metabolismo
9.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: covidwho-1470027

RESUMO

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in over 100 million infections and millions of deaths. Effective vaccines remain the best hope of curtailing SARS-CoV-2 transmission, morbidity, and mortality. The vaccines in current use require cold storage and sophisticated manufacturing capacity, which complicates their distribution, especially in less developed countries. We report the development of a candidate SARS-CoV-2 vaccine that is purely protein based and directly targets antigen-presenting cells. It consists of the SARS-CoV-2 Spike receptor-binding domain (SpikeRBD) fused to an alpaca-derived nanobody that recognizes class II major histocompatibility complex antigens (VHHMHCII). This vaccine elicits robust humoral and cellular immunity against SARS-CoV-2 and its variants. Both young and aged mice immunized with two doses of VHHMHCII-SpikeRBD elicit high-titer binding and neutralizing antibodies. Immunization also induces strong cellular immunity, including a robust CD8 T cell response. VHHMHCII-SpikeRBD is stable for at least 7 d at room temperature and can be lyophilized without loss of efficacy.


Assuntos
Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/farmacologia , COVID-19/imunologia , COVID-19/prevenção & controle , Pandemias , SARS-CoV-2/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/epidemiologia , Vacinas contra COVID-19/administração & dosagem , Camelídeos Americanos/imunologia , Feminino , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Imunidade Celular , Imunidade Humoral , Imunização Secundária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pandemias/prevenção & controle , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , SARS-CoV-2/genética , Anticorpos de Domínio Único/administração & dosagem , Anticorpos de Domínio Único/imunologia , Glicoproteína da Espícula de Coronavírus/administração & dosagem , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
11.
Int J Med Sci ; 18(15): 3389-3394, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1409697

RESUMO

Current standard vaccine testing protocols take approximately 10-24 months of testing before a vaccine can be declared successful. Sometimes by the time a successful vaccine is out for public use, the outbreak may already be over. With no vaccine or antiviral drug available to treat the infected, we are left with the age-old methods of isolation, quarantine, and rest, to arrest such a viral outbreak. Convalescent blood therapy and covalent plasma therapy have often proved effective in reducing mortality, however, the role of innate and adaptive immune cells in these therapies have been overlooked. Antigen presenting cells (APCs), CD4+ T memory cells, CD8+ T memory cells, and memory B-Cells all play a vital role in sustainable defense and subsequent recovery. This report incorporates all these aspects by suggesting a novel treatment therapy called selective convalescent leukapheresis and transfusion (SCLT) and also highlights its potential in vaccination. The anticipated advantages of the proposed technique outweigh the cost, time, and efficiency of other available transfusion and vaccination processes. It is envisioned that in the future this new approach could serve as a rapid emergency response to subdue a pathogen outbreak and to stop it from becoming an epidemic, or pandemic.


Assuntos
COVID-19/terapia , Imunoterapia/métodos , Células Apresentadoras de Antígenos/citologia , Antivirais/uso terapêutico , Transfusão de Sangue , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Vacinas contra COVID-19 , Citocinas/metabolismo , Humanos , Imunização Passiva/métodos , Fatores Imunológicos , Leucaférese , Pandemias , SARS-CoV-2 , Soroterapia para COVID-19
12.
Nat Commun ; 12(1): 5215, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1392854

RESUMO

Achieving sufficient worldwide vaccination coverage against SARS-CoV-2 will require additional approaches to currently approved viral vector and mRNA vaccines. Subunit vaccines may have distinct advantages when immunizing vulnerable individuals, children and pregnant women. Here, we present a new generation of subunit vaccines targeting viral antigens to CD40-expressing antigen-presenting cells. We demonstrate that targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein to CD40 (αCD40.RBD) induces significant levels of specific T and B cells, with long-term memory phenotypes, in a humanized mouse model. Additionally, we demonstrate that a single dose of the αCD40.RBD vaccine, injected without adjuvant, is sufficient to boost a rapid increase in neutralizing antibodies in convalescent non-human primates (NHPs) exposed six months previously to SARS-CoV-2. Vaccine-elicited antibodies cross-neutralize different SARS-CoV-2 variants, including D614G, B1.1.7 and to a lesser extent B1.351. Such vaccination significantly improves protection against a new high-dose virulent challenge versus that in non-vaccinated convalescent animals.


Assuntos
Antígenos CD40/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Linfócitos B/imunologia , Convalescença , Humanos , Macaca , Camundongos , Mutação , Domínios Proteicos , Reinfecção/prevenção & controle , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Linfócitos T/imunologia , Vacinação , Vacinas de Subunidades Antigênicas/imunologia
13.
Clin Immunol ; 231: 108828, 2021 10.
Artigo em Inglês | MEDLINE | ID: covidwho-1363931

RESUMO

COVID-19 is characterized by a dysregulation of inflammatory cytokines ultimately resulting a cytokine storm that can result in significant morbidity and mortality. We developed an in-vitro assay using activated peripheral blood mononuclear cells (PBMCs) stimulated with lipopolysaccharide (LPS) or CD3 + CD28 to examine secretion of cytokines from antigen presenting cells (APCs) and T cells, respectively, in donor patients with a history of COVID-19 (convalescent) and uninfected negative controls. We hypothesized that a novel antioxidant called Tempol may decrease cytokines from activated peripheral blood cells from both COVID-19 patients and normal donors. Preincubation of immune cells with Tempol resulted in a significant (P < 0.05) decrease in multiple T cell and APC-derived cytokines from both cells of COVID-19 (n = 7) and uninfected donors (n = 7). These preliminary results suggest that Tempol has strong in-vitro anti-cytokine activity and supports additional studies examining the use of Tempol for the treatment of COVID-19.


Assuntos
Antioxidantes/farmacologia , COVID-19/imunologia , Óxidos N-Cíclicos/farmacologia , Ativação Linfocitária/efeitos dos fármacos , SARS-CoV-2 , Linfócitos T/efeitos dos fármacos , Adulto , Idoso , Células Apresentadoras de Antígenos/metabolismo , Antígenos Virais/metabolismo , Citocinas/antagonistas & inibidores , Citocinas/efeitos dos fármacos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Marcadores de Spin , Linfócitos T/fisiologia
14.
Drug Discov Today ; 26(11): 2619-2636, 2021 11.
Artigo em Inglês | MEDLINE | ID: covidwho-1330754

RESUMO

Unlike conventional Coronavirus 2019 (COVID-19) vaccines, intranasal vaccines display a superior advantage because the nasal mucosa is often the initial site of infection. Preclinical and clinical studies concerning intranasal immunization elicit high neutralizing antibody generation and mucosal IgA and T cell responses that avoid severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in both; the upper and lower respiratory tract. A nasal formulation is non-invasive with high appeal to patients. Intranasal vaccines enable self-administration and can be designed to survive at ambient temperatures, thereby simplifying logistical aspects of transport and storage. In this review, we provide an overview of nasal vaccines with a focus on formulation development as well as ongoing preclinical and clinical studies for SARS-CoV-2 intranasal vaccine products.


Assuntos
Administração Intranasal , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Desenvolvimento de Medicamentos , Adjuvantes de Vacinas , Células Apresentadoras de Antígenos/imunologia , Sistemas de Liberação de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Imunidade nas Mucosas/imunologia , Imunogenicidade da Vacina , Imunoglobulina A/imunologia , SARS-CoV-2 , Linfócitos T/imunologia
15.
Nat Commun ; 12(1): 4117, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: covidwho-1297301

RESUMO

Epidemiological and clinical reports indicate that SARS-CoV-2 virulence hinges upon the triggering of an aberrant host immune response, more so than on direct virus-induced cellular damage. To elucidate the immunopathology underlying COVID-19 severity, we perform cytokine and multiplex immune profiling in COVID-19 patients. We show that hypercytokinemia in COVID-19 differs from the interferon-gamma-driven cytokine storm in macrophage activation syndrome, and is more pronounced in critical versus mild-moderate COVID-19. Systems modelling of cytokine levels paired with deep-immune profiling shows that classical monocytes drive this hyper-inflammatory phenotype and that a reduction in T-lymphocytes correlates with disease severity, with CD8+ cells being disproportionately affected. Antigen presenting machinery expression is also reduced in critical disease. Furthermore, we report that neutrophils contribute to disease severity and local tissue damage by amplification of hypercytokinemia and the formation of neutrophil extracellular traps. Together our findings suggest a myeloid-driven immunopathology, in which hyperactivated neutrophils and an ineffective adaptive immune system act as mediators of COVID-19 disease severity.


Assuntos
COVID-19/complicações , COVID-19/imunologia , Síndrome da Liberação de Citocina/complicações , Monócitos/patologia , Ativação de Neutrófilo , Idoso , Células Apresentadoras de Antígenos/imunologia , COVID-19/sangue , COVID-19/virologia , Estudos de Casos e Controles , Síndrome da Liberação de Citocina/sangue , Síndrome da Liberação de Citocina/patologia , Síndrome da Liberação de Citocina/virologia , Citocinas/sangue , Armadilhas Extracelulares/metabolismo , Feminino , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Imunofenotipagem , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença
16.
Front Immunol ; 12: 649359, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1295634

RESUMO

Obesity is one of the foremost risk factors in coronavirus infection resulting in severe illness and mortality as the pandemic progresses. Obesity is a well-known predisposed chronic inflammatory condition. The dynamics of obesity and its impacts on immunity may change the disease severity of pneumonia, especially in acute respiratory distress syndrome, a primary cause of death from SARS-CoV-2 infection. The adipocytes of adipose tissue secret leptin in proportion to individuals' body fat mass. An increase in circulating plasma leptin is a typical characteristic of obesity and correlates with a leptin-resistant state. Leptin is considered a pleiotropic molecule regulating appetite and immunity. In immunity, leptin functions as a cytokine and coordinates the host's innate and adaptive responses by promoting the Th1 type of immune response. Leptin induced the proliferation and functions of antigen-presenting cells, monocytes, and T helper cells, subsequently influencing the pro-inflammatory cytokine secretion by these cells, such as TNF-α, IL-2, or IL-6. Leptin scarcity or resistance is linked with dysregulation of cytokine secretion leading to autoimmune disorders, inflammatory responses, and increased susceptibility towards infectious diseases. Therefore, leptin activity by leptin long-lasting super active antagonist's dysregulation in patients with obesity might contribute to high mortality rates in these patients during SARS-CoV-2 infection. This review systematically discusses the interplay mechanism between leptin and inflammatory cytokines and their contribution to the fatal outcomes in COVID-19 patients with obesity.


Assuntos
COVID-19/patologia , Leptina/imunologia , Obesidade/patologia , SARS-CoV-2/imunologia , Adipócitos/metabolismo , Células Apresentadoras de Antígenos/imunologia , COVID-19/mortalidade , Citocinas/imunologia , Suscetibilidade a Doenças/patologia , Humanos , Leptina/sangue , Monócitos/imunologia , Fatores de Risco , Índice de Gravidade de Doença , Células Th1/imunologia
17.
Sci Rep ; 11(1): 5402, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: covidwho-1123146

RESUMO

Most multiple sclerosis (MS) patients given currently available disease-modifying drugs (DMDs) experience progressive disability. Accordingly, there is a need for new treatments that can limit the generation of new waves T cell autoreactivity that drive disease progression. Notably, immune cells express GABAA-receptors (GABAA-Rs) whose activation has anti-inflammatory effects such that GABA administration can ameliorate disease in models of type 1 diabetes, rheumatoid arthritis, and COVID-19. Here, we show that oral GABA, which cannot cross the blood-brain barrier (BBB), does not affect the course of murine experimental autoimmune encephalomyelitis (EAE). In contrast, oral administration of the BBB-permeable GABAA-R-specific agonist homotaurine ameliorates monophasic EAE, as well as advanced-stage relapsing-remitting EAE (RR-EAE). Homotaurine treatment beginning after the first peak of paralysis reduced the spreading of Th17 and Th1 responses from the priming immunogen to a new myelin T cell epitope within the CNS. Antigen-presenting cells (APC) isolated from homotaurine-treated mice displayed an attenuated ability to promote autoantigen-specific T cell proliferation. The ability of homotaurine treatment to limit epitope spreading within the CNS, along with its safety record, makes it an excellent candidate to help treat MS and other inflammatory disorders of the CNS.


Assuntos
Sistema Nervoso Central/patologia , Esclerose Múltipla/imunologia , Linfócitos T/imunologia , Taurina/análogos & derivados , Animais , Apresentação de Antígeno/efeitos dos fármacos , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Proliferação de Células/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/imunologia , Modelos Animais de Doenças , Progressão da Doença , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Camundongos Endogâmicos C57BL , Esclerose Múltipla/patologia , Proteína Proteolipídica de Mielina/imunologia , Fragmentos de Peptídeos/imunologia , Recidiva , Baço/patologia , Linfócitos T/efeitos dos fármacos , Taurina/farmacologia , Ácido gama-Aminobutírico/farmacologia
18.
Cells ; 10(2)2021 01 27.
Artigo em Inglês | MEDLINE | ID: covidwho-1055022

RESUMO

Monitoring antigen-specific T cell immunity relies on functional tests that require T cells and antigen presenting cells to be uncompromised. Drawing of blood, its storage and shipment from the clinical site to the test laboratory, and the subsequent isolation, cryopreservation and thawing of peripheral blood mononuclear cells (PBMCs) before the actual test is performed can introduce numerous variables that may jeopardize the results. Therefore, no T cell test is valid without assessing the functional fitness of the PBMC being utilized. This can only be accomplished through the inclusion of positive controls that actually evaluate the performance of the antigen-specific T cell and antigen presenting cell (APC) compartments. For Caucasians, CEF peptides have been commonly used to this extent. Moreover, CEF peptides only measure CD8 cell functionality. We introduce here universal CD8+ T cell positive controls without any racial bias, as well as positive controls for the CD4+ T cell and APC compartments. In summary, we offer new tools and strategies for the assessment of PBMC functional fitness required for reliable T cell immune monitoring.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Leucócitos Mononucleares/imunologia , Células Apresentadoras de Antígenos/imunologia , Antígenos/imunologia , Humanos , Testes Imunológicos/métodos , Peptídeos/imunologia
19.
Cell ; 184(6): 1401, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: covidwho-1030852

RESUMO

The first two vaccines proven to be effective for inhibiting COVID-19 illness were both mRNA, achieving 95% efficacy (and safety) among 74,000 participants (half receiving placebo) after intramuscular delivery of two shots, 3-4 weeks apart. To view this Bench to Bedside, open or download the PDF.


Assuntos
Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/uso terapêutico , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/uso terapêutico , Células Apresentadoras de Antígenos/imunologia , Linfócitos B/imunologia , COVID-19/virologia , Sistemas de Liberação de Medicamentos/métodos , Humanos , Lipossomos , Nanopartículas , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T/imunologia , Resultado do Tratamento
20.
Vaccine ; 38(48): 7629-7637, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: covidwho-879777

RESUMO

This work demonstrates the presence of immune regulatory cells in the cervical lymph nodes draining Bacillus Calmette-Guérin (BCG) vaccinated site on the dorsum of the ear in guinea pigs. It is shown that whole cervical lymph node cells did not proliferate in vitro in the presence of soluble mycobacterial antigens (PPD or leprosin) despite being responsive to whole mycobacteria. Besides, T cells from these lymph nodes separated as a non-adherent fraction on a nylon wool column, proliferated to PPD in the presence of autologous antigen presenting cells. Interestingly, addition of as low as 20% nylon wool adherent cells to these, sharply decreased the proliferation by 83%. Looking into what cells in the adherent fraction suppressed the proliferation, it was found that neither the T cell nor the macrophage enriched cell fractions of this population individually showed suppressive effect, indicating that their co-presence was necessary for the suppression. Since BCG induced granulomas resolve much faster than granulomas induced by other mycobacteria such as Mycobacterium leprae the present experimental findings add to the existing evidence that intradermal BCG vaccination influences subsequent immune responses in the host and may further stress upon its beneficial role seen in Covid-19 patients.


Assuntos
Antígenos de Bactérias/farmacologia , Vacina BCG/farmacologia , Granuloma/imunologia , Linfonodos/imunologia , Linfócitos T/imunologia , Animais , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/microbiologia , COVID-19 , Adesão Celular , Proliferação de Células , Infecções por Coronavirus/prevenção & controle , Orelha , Feminino , Granuloma/microbiologia , Cobaias , Humanos , Injeções Intradérmicas , Linfonodos/microbiologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Mycobacterium bovis/imunologia , Mycobacterium leprae/imunologia , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Remissão Espontânea , Linfócitos T/classificação , Linfócitos T/efeitos dos fármacos , Linfócitos T/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA